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Magnetic excitation of ferromagnetic dimer molecules
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Abstract. The magnetic excitation in ferromagnetic dimer molecules was studied with using the local
spin-density approximation. The equation of motion for the atomic magnetic moment was presented. To
obtain adiabatic excited states, we implemented a penalty energy technique, which imposes a frozen spin
configuration. Calculation conditions of the technique were examined. We applied the method to ferro-
magnetic dimer molecules, Fe2, and estimated the magnetic excitation energy. We discussed the magnetic
interaction between atoms with mapping the result onto the Heisenberg model.

PACS. 31.50.+w Excited states – 31.15.Ar Ab initio calculations – 71.15.Pd Molecular dynamics
calculations (Car-Parrinello) and other numerical simulations – 75.50.Bb Fe and its alloys

1 Introduction

Magnetic properties have been often studied by using the
Heisenberg model, which is useful on various magnetic ma-
terials. The mapping of system to a Heisenberg model
would be an interesting subject on the magnetic mate-
rials also in many ab initio approaches [1,2]. Once the
mapping has been done, magnetic properties are derived
from the model Hamiltonian. Alternatively, there would
be a way to treat the system only from first principles.
Recently, the magnetic corrective excitation energy are
discussed with the time-dependent variational principle
by Niu and Kleinman [3]. Following their work, the mag-
netic excitation which causes the adiabatic slow dynamics
can be described by a new equation, which we call the
Niu-Kleinman (NK) equation in this paper. The applica-
tion to the Kohn-Sham (KS) density functional theory [4]
is straightforward and, without mapping to a Heisenberg
model, gives the quantitative discussion on the low-lying
magnetic excitation of system in the ab initio manner.

In this paper, we described the theory for estimat-
ing the magnetic excitation energy of ferromagnetic dimer
in the density functional theory and applied it to the
molecule, Fe2. The checking of calculations and the com-
parison with the result obtained from the Heisenberg
model have been performed. The magnetic cluster, Fe2,
has a ferromagnetic ground state with the total magneti-
zation and the bond length being 6µB and 3.70 a.u., re-
spectively. These properties are experimentally observed
[5,6]. Based on adiabatic treatments for the magnetic ex-
citation, frozen magnon calculations have been performed
with the local spin-density approximation (LSDA) or its
gradient corrected one for the bulk of magnetic elements
(Fe, Co, Ni) [7,8] and the antiferromagnet MnO [9].
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2 Theory

2.1 Niu-Kleinman equation for ferromagnetic dimers

The NK equation describes dynamics of slow variables for
the magnetic excitation. Slow variables of electronic free-
dom can be separated from the high energy excitation
by imposing an adiabatic approximation. Suppose that
the ground state Φ0 of system realizes the ferromagnetic
spin configuration of a dimer molecule. For example, the
Φ0 is a single Slater determinant consisting of a set of
occupied Kohn-Sham orbitals with bispinor representa-
tion. The magnetization density m(r) is calculated from
〈Φ
∣∣ρ(r)σ

∣∣Φ〉, where ρ(r) and σ is the density operator
and the Pauli’s spin vector. The magnetization density of
the ground state, m0(r), is obtained from this expression
with the wave function Φ = Φ0. Low-energy magnetic ex-
citations are identified with the small deviation from the
ground state magnetization density.

The wavefunction of the excited state, within the adi-
abatic approximation, was defined as the wavefunction
which minimizes the total energy of system subject to
the constraint imposed on a magnetization configura-
tion (frozen spin approximation). Then, these wavefunc-
tions are functionals of magnetization densities, namely,
Φ = Φ[m(r)].

Equations of motion for the magnetization would be
obtained by employing the time-dependent variational
principle [10] that the action should be extremized by the
wavefunction with the frozen spin approximation. With
adding the harmonic approximation in the magnetization
deviation, the equation of motion for the magnetization
should be obtained in general [3,8].

The magnetization density is distributed around atoms
with a shape at the ground state and rigidly canted at
low-energy excited states deviated from the ground state.
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Fig. 1. The spin configuration of the adiabatic magnetic exci-
tation.

In many cases of the magnetic real system, the atomic
magnetic moment may be a well defined quantity when
an appropriate atomic region is specified. Introduce the
atomic magnetic moment given by

MI = µB

∫
VI

m(r)dr, (1)

where the atomic region of Ith atom, VI, was defined by
the sphere with a radius, rI

a, and the µB is the Bohr mag-
neton. Choosing the z-axis as a quantized axis, MI = Mez
for both atoms in the ground state of molecule. The low-
lying magnetic excitations are described by two coopera-
tive magnetic modes,

Mx = M1x −M2x, (2)
My = M1y −M2y. (3)

Within the harmonic approximation, the modulus of mag-
netization does not change from the ground state value.
It may be convenient to use polar coordinates (see Fig. 1)
for the modes

1
2M

(
Mx

My

)
= θ

(
exm
eym

)
= θ(cosφ ex + sinφ ey), (4)

where ex and ey are unit vectors along x- and y-direction
of spin space. The θ and φ represent the polar angle of
the adiabatic magnetic moment from the z-axis and the
rotated angle from the x-axis. The time-derivative of the
latter gives the angular frequency of the magnetic exci-
tation. The θ, which is assumed to be a small value, will
be used for the intermediate parameter in the frozen spin
calculation.

The NK equation is given by

~

(
Ωxx Ωxy

Ωyx Ωyy

)(
ėxm
ėym

)
=

(
Kxx Kxy

Kyx Kyy

)(
exm
eym

)
, (5)

where

Ωαβ = −2Im

〈
∂Φ

∂eα

∣∣∣∣∣ ∂Φ∂eβ

〉
(6)

and

Kαβ =
∂2Etot
∂eα∂eβ

(7)

for α, β = x, y. The diagonal part of Ωαβ vanishes and
the off-diagonal part has an anti-symmetry, Ωxy = −Ωyx.
Since the spin-orbit interaction is neglected at present
case, the spin configuration is equivalent under rotations
around the z-axis. Therefore, Kxx = Kyy and Kxy =
Kyx = 0. For the eigen spin configurations, e±m = exm±ieym,
the eigenenergy is given by

~ω = ±Kxx

Ωxy
, (8)

where the ± corresponds to the signs of precession of the
atomic magnetic moment. In the frame of frozen spin cal-
culations, the minimum total energy and the correspond-
ing wave functions are required to calculate under the con-
straint with a finite θ. When we write them as E[θeα] and
Φ[θeα], the excitation energy is estimated from

|~ω| = E[θex]−E[0]
|∆Ω[θex, θey]| , (9)

where

∆Ω[θex, θey] = −2Im〈Φ[θex]− Φ[0]
∣∣ Φ[θey]− Φ[0] 〉.

(10)

We should note three points here. First, both denominator
and numerator of Eq. (9) are proportional to the square
of θ for small θs. Therefore, the ~ω calculated dose not
strongly depend on the θ used. Next, the definition of
∆Ω contains the difference of wavefunction. Due to this,
even the phase of Φ[θeα] should continuously tend to the
phase of Φ[0] when θ goes to zero. Finally, both of Φ[θex]
and Φ[θey ] are not necessarily obtained from the energy
minimization under respective constraints. One connects
with the other by a rotation of the spin space.

Alternatively, ∆Ω can be expressed by using a Berry
phase representation [11],

∆Ω[θex, θey] = −2 Im log 〈Φ[0]
∣∣Φ[θex] 〉

× 〈Φ[θex]
∣∣Φ[θey] 〉〈Φ[θey ]

∣∣Φ[0] 〉. (11)

This expression may be convenient for numerical estima-
tion. Because each wave function and its complex conju-
gate appear in the expression, it is not necessary to take
care of arbitrary phases of wave functions.

2.2 Spin constraint

The adiabatic wave function and the adiabatic potential
energy were estimated by the spin constraint technique
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with a penalty energy function. Introduce the penalty
energy,

Ep =
1
2

∫
α(r)(m⊥(r))2dr, (12)

where m⊥ represents the spin density component perpen-
dicular to the constraint direction ec(r) and the α(r) is a
sufficiently large positive value. The energy minimization
of the total energy which includes the penalty energy al-
lows us to impose a constraint on the spin configuration.
Further, taking into account a distribution of the spin den-
sity around atoms, we introduce the approximation,

α(r) =

{
αI |r−RI | < rIa
0 otherwise,

(13)

where the penalty parameter αI is uniformly constant
around the atomic site RI . The penalty energy is finally
expressed by

Ep =
1
2

∑
I

αI

∫
VI

(m⊥I (r))2dr. (14)

To get the adiabatic state, after obtaining the ground state
spinor wave functions, we switched gradually on the con-
straint. In practice, we used the formula of molecular dy-
namics,

µΨ̈i(r) = −HΨi(r)− δEp

δΨi(r)
+ (damping)

+ (orthogonalization constraint), (15)

in the update of wave functions, where Ψ and H is the
KS wave function and the KS Hamiltonian with spinor
representation and µ is the pseudo mass for the freedom of
wavefunctions [12–14]. We start with very small θ and αI ,
and, during appropriate times of updates, increase these
values to interested values. For the θ, we mainly used 3◦
and tested 2◦ and 5◦. The larger constraint parameter αI
would be expected to give more accurate results.

3 Application to Fe2

3.1 Result

The Fe2 molecule, whose bond length was fixed at the
ground state value, was set in a large periodic cubic box
having the dimension of 20 a.u. The ultra-soft pseudo-
potentials were employed to describe the valence-core in-
teraction [14–16]. In this pseudo-potential scheme the den-
sity matrix has a hard augmented component, for which
we used a cutoff energy of more than 250 Ry. The spinor
wave functions were expanded by a cutoff energy of more
than 24 Ry. The convergence with respect to these cutoff
energies was examined. The formula given by Perdew and
Zunger [17] was used for the exchange-correlation energy.

The excitation energy was directly estimated by
Eq. (9), in which the numerator was obtained from the dif-
ference of total energies between the ground state and the
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Fig. 2. The typical θ-dependence of the ∆E and ∆Ω. αI =
6400 a.u. and ra = 1.5 a.u. were used.

adiabatic state, ∆E, and the denominator, ∆Ω, was cal-
culated by using the KS wave functions. ∆E and ∆Ω were
expected to be proportional to the square of θ. Figure 2
shows ∆E and ∆Ω with respect to θ2. The excitation en-
ergies are 558, 555 and 556 meV for θ = 2◦, 3◦, and 5◦,
where αI = 6400 a.u. and ra = 1.5 a.u. were used.

The resulting penalty energies (= Ep) were within sev-
eral percent of ∆E. Consequently, the excitation energy
was obtained within several percent for αI parameters (800
∼ 6400 a.u.) used in the present work. We tested the de-
pendence of the radius of atomic spheres, ra. When the
radius is between 75 and 85% of the half of bond length,
the resulting excitation energy falls within several percents
of the value at ra = 1.5 a.u. The modulus of atomic mo-
ments calculated dose not change from the ground state
value even for θ = 5◦.

The other important parameter of calculation condi-
tions is a cutoff of the plane waves. The test of cutoff
energies are shown in Fig. 3. The full and dotted curves
represent convergences with respect to EWF

cut and Edens
cut ,

respectively. As written in the figure, the Ωxy (= ∆Ω/θ2)
shows a good convergence with respect to EWF

cut and Edens
cut .

Changes of ~ω in the figure are mainly caused by Kxx. The
convergence of Kxx with respect to EWF

cut is relatively slow.
When EWF

cut = 60 Ry, the Ep = 0.0025 mHartree, which is
1.7% of ∆E.

3.2 Discussion

It is interesting to map the results onto a Heisenberg
model,

H = JS1 · S2, (16)

where J is the exchange-interaction between two atomic
moments. The magnetic excitation energy is given by
~ω = ±2µB|J |S, where S is the atomic moment of the
model, while the variation of magnetic energy with re-
spect to the frozen spin configuration is given by ∆E(θ) =
2|J |S2θ2. The resulting expression for ~ω is

|~ω| = µB

S

∆E(θ)
θ2

· (17)
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Fig. 3. The convergence of the excitation energy with respect
to EWF

cut (full curve, Edens
cut = 300 Ry) and Edens

cut (dotted curve,
EFW

cut = 24 Ry). The data of Ωxy are written in the figure. θ =
3◦, αI = 6400 a.u., and ra = 1.5 a.u. were used.

The comparison with Eq. (9) implies that |∆Ω|/θ2 ∼
S/µB. Indeed, Ωxy (= |∆Ω|/θ2) is estimated to be 2.85,
which is close to the value of total magnetic moment per
atom in µB.

Suppose spin rotation operators, Uα(θ) (α = x, y),
about α-axis by the angle, θ, at each point in real space.
After introducing KS orbitals {Ψi} in Eq. (10) or (11)
and using the spin rotation operator to construct adi-
abatic wave functions, Φ[θeα], it is found that |∆Ω| '
Mtotθ

2/2µB, where Mtot is the total magnetic moment.
This relation may give a qualitative validity for using a
Heisenberg model in the system. However, quantitatively,
there are ambiguities in using Mtotal/2µB or M/µB in-
stead of Ωxy. Our result shows that Ωxy dose not strongly
depend on the calculation conditions. For example, Ωxy
under ra = 1.0 a.u. is smaller than the value of ra =
1.5 a.u. by only 4%, whereas the calculated atomic mo-
ment, M , under ra = 1.0 a.u. is even smaller than the
value at ra = 1.5 a.u. by 28%.

Within the Heisenberg model, the difference between
energies of the ferro- and antiferromagnetic configurations
allows us to make an estimation of the exchange interac-
tion between atomic moments. The antiferromagnet has
an energy above the ferromagnet by 1.91 eV, which is in
agreement with the previous value, 2.10 eV [18]. Conse-
quently, |J |S2 ' 1

2 × 1.91 eV = 955 meV. This value is
larger than |J |M2 (= ∆E(θ)/2θ2 = 727 meV) calculated
in the frozen spin calculation by about 30%. We should
note that the latter presents the interaction related only
with the ground state, but the former includes some av-
eraged effects between the ferro- and antiferromagnetic
states.

The converged value of magnetic excitation energy is
expected from the limit of the large EWF

cut in Fig. 3 to be
508 meV. This value is similar to the maximum magnon
energy calculated by Halilov et al. in the bulk bcc Fe [7].

4 Summary

We have implemented the ab initio approach to the mag-
netic excitation energy, based on the time-dependent vari-
ational principle and the adiabatic approximation for elec-
tronic slow variables. The application to Fe2 molecule was
performed with help of the constraining technique that we
have developed. The calculation condition of the method
developed in this work was examined. The convergence of
the magnetic excitation energy with respect to the cut-
off energy is slow and EWF

cut = 60 Ry is necessary to the
accuracy of a few percent. The calculated Berry curva-
ture, Ωxy, dose not strongly depend on the calculation
conditions. Therefore, the ambiguity by mapping to the
Heisenberg model, which may be around 30% in the mag-
netic excitation energy, will be almost avoided by using
the Berry curvature. The observation of the magnetic ex-
citation studied in this work is desired in experiments.
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